After news of the Notre Dame’s fire in 2019, everyone has been left to wonder if it can even be restored at all to its previous state. Luckily, Andrew Tallon scanned the entire cathedral in 2015, creating a perfect digital copy. With 3D technology to digitize art and landmarks, we now have a way to preserve our global heritage and historical landmarks.

- The students were installed on 21 June

- The school was printed in 18 hours, according to 14Trees and LafargeHolcim.
- Malawi's director of education impressed with school
- Africa has a huge deficit of schools and classrooms; 36,000 in Malawi alone, UNICEF says
- 14Trees wants to expand use of 3DCP technology in other African countries

In the face of an acute affordable housing shortage, Habitat is looking for game changing scalable and affordable home-ownership solutions. The lack of affordable housing in the Phoenix metro is at an all-time high and Habitat continues to explore innovative ways to address the critical issue.

3D printing for sustainable architecture: Zero-Wastage in construction, but perfectly shaped, fast and efficient

3D printing technologies make it easier for the construction industry to adapt to changing conditions. The AI-Table project stands as a true symbol. Rising raw material prices, fragile supply chains, growing time pressure and maximum environmental awareness:

The construction industry is being confronted with changing conditions on a wide variety of levels. Although the digitization of workflows is advancing in this industry, it has so far focused more on planning and administrative tasks than on end-to-end data-driven processes, from design to the actual structural element. Advanced 3D printing creates the necessary basis for future-oriented architectural projects.

At first glance, they are just a few table legs. The filigree, interwoven structures could be the work of a designer, inspired by observations made during a walk in the forest. To ensure that such fragile-looking structures do not collapse under the weight of a heavy tabletop, however, profound knowledge of the calculation of static loads is required in addition to artistic skill.

In fact, the idea behind these branching table legs is not just based on the creative mind of a human being, but also the AI functionality of Autodesk Fusion 360 software combined with powerful 3D printing technology and traditional metal casting. The idea was born in Singapore at the Architectural Intelligence Research Lab (AIRLAB), a design research laboratory from the Singapore University of Technology where the idea of reliably absorbing the structural forces of the tabletop while using a minimum amount of material was discussed. The material of choice turned to bronze. Therefore, a positive pattern made of polymethyl methacrylate (short PMMA) was 3D printed, and the patterns were then transformed into cast parts by the renowned art foundry Strassacker, based in Germany. To cast the parts, the foundry molded the PMMA patterns into a ceramic shell that met the high-precision specifications. And as filigree as the end product may appear, in terms of stability these table legs are fully equal to a solid construction. The difference is made by a significantly reduced material input thanks to AI-assisted design and printed casting.
Filigree furniture design as a role model for 3D-printed building elements

Under the direction of architecture professors Carlos Bañón from Spain and Felix Raspall from Argentina, AIRLAB is dedicated to the question of how high-performance constructions can be realized with technological support and minimized use of raw materials. The focus is on digital design and manufacturing methods such as structural optimization and 3D printing, with the help of which Bañón and Raspall want to firmly establish the idea of sustainability in the world of architecture. The table legs, which were created with the support of voxeljet, form a blueprint, so to speak, for a wide variety of design and construction projects of all types and sizes.

„3D printing offers us the opportunity to create real products from digitally optimized structures that would be difficult to manufacture conventionally", Carlos Bañón, Co-Founder and Director - AIRLAB – Singapore

“3D printing gives us the opportunity to create real products from digitally optimized structures,” explains Carlos Bañón. “With conventional manufacturing processes, it would be impossible to create a real-world usable component based on the values generated by the software in terms of structural optimization, weight reduction and high performance. With advanced 3D printing technologies, on the other hand, this is easily achievable.” Felix Raspall adds, “In architecture, the design process traditionally starts with conceptual sketches and then leads to a highly technical project, culminating in the production phase. By incorporating algorithms into the design phase and 3D printing into manufacturing, we open up completely different creative dimensions with new levels of formal and material freedom.”
"3D printing brings sustainability to the world of architecture"

For architect and AIRLAB co-founder Carlos Bañón, one thing is certain: “Sustainability is the most urgent challenge of this century, and the construction industry plays a large and important role in this – simply because of its size and the lifespan of the products it generates.”

Meet Our Sponsors

Latest Sponsor News

Articles Most Read

Latest News

Statistics

Articles View Hits
1064026

Who's Online

We have 40 guests and no members online